Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- William Carter
- Alexander I Wiechert
- Alex Walters
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Bruce Hannan
- Charles F Weber
- Costas Tsouris
- Derek Dwyer
- Joanna Mcfarlane
- Jonathan Willocks
- Joshua Vaughan
- Loren L Funk
- Louise G Evans
- Matt Vick
- Meghan Lamm
- Mengdawn Cheng
- Paula Cable-Dunlap
- Peter Wang
- Polad Shikhaliev
- Richard L. Reed
- Shajjad Chowdhury
- Steven J Zinkle
- Theodore Visscher
- Tim Graening Seibert
- Tolga Aytug
- Vandana Rallabandi
- Vladislav N Sedov
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yacouba Diawara
- Yanli Wang
- Ying Yang
- Yutai Kato

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.