Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Vivek Sujan
- Tomonori Saito
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Omer Onar
- Adam Siekmann
- Andrzej Nycz
- Chris Masuo
- Erdem Asa
- Ethan Self
- Jaswinder Sharma
- Luke Meyer
- Robert Sacci
- Sergiy Kalnaus
- Subho Mukherjee
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Bekki Mills
- Bruce Hannan
- Chanho Kim
- Dave Willis
- Felipe Polo Garzon
- Georgios Polyzos
- Hyeonsup Lim
- Ilias Belharouak
- Isabelle Snyder
- John Wenzel
- Joshua Vaughan
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Keju An
- Khryslyn G Araño
- Logan Kearney
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Peter Wang
- Polad Shikhaliev
- Sai Krishna Reddy Adapa
- Shajjad Chowdhury
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Vasilis Tzoganis
- Vasiliy Morozov
- Vera Bocharova
- Victor Fanelli
- Vladislav N Sedov
- Xiang Lyu
- Yacouba Diawara
- Yun Liu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.