Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Viswadeep Lebakula
- Alexandre Sorokine
- Ali Passian
- Annetta Burger
- Bogdan Dryzhakov
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Daniel Adams
- Debraj De
- Eve Tsybina
- Gautam Malviya Thakur
- Harper Jordan
- James Gaboardi
- Jesse McGaha
- Jessica Moehl
- Joel Asiamah
- Joel Dawson
- Kevin Sparks
- Kyle Kelley
- Liz McBride
- Nance Ericson
- Philipe Ambrozio Dias
- Srikanth Yoginath
- Steven Randolph
- Taylor Hauser
- Todd Thomas
- Varisara Tansakul
- Xiuling Nie
1 - 5 of 5 Results

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.