Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Soydan Ozcan
- Chris Masuo
- Halil Tekinalp
- Meghan Lamm
- Rama K Vasudevan
- Vlastimil Kunc
- Ahmed Hassen
- Peter Wang
- Sergei V Kalinin
- Umesh N MARATHE
- Yongtao Liu
- Alex Walters
- Dan Coughlin
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Beth L Armstrong
- Brian Gibson
- Brian Post
- David Nuttall
- Georges Chahine
- Jesse Heineman
- Joshua Vaughan
- Kashif Nawaz
- Luke Meyer
- Matt Korey
- Nadim Hmeidat
- Pum Kim
- Sanjita Wasti
- Stephen Jesse
- Steve Bullock
- Tyler Smith
- Udaya C Kalluri
- William Carter
- Xianhui Zhao
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Amber Hubbard
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Ben Lamm
- Bogdan Dryzhakov
- Brian Fricke
- Brittany Rodriguez
- Cait Clarkson
- Calen Kimmell
- Chelo Chavez
- Chengyun Hua
- Christopher Fancher
- Christopher Rouleau
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gabriel Veith
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- J.R. R Matheson
- Jamieson Brechtl
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jewook Park
- Jiaqiang Yan
- Jim Tobin
- John Potter
- Jong K Keum
- Josh Crabtree
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Petro Maksymovych
- Radu Custelcean
- Riley Wallace
- Ritin Mathews
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steven Randolph
- Subhabrata Saha
- Sumner Harris
- Tolga Aytug
- Utkarsh Pratiush
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Zhiming Gao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.