Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Brian Post
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Michael Kirka
- Olga S Ovchinnikova
- Rangasayee Kannan
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Clay Leach
- Costas Tsouris
- Joshua Vaughan
- Kashif Nawaz
- Luke Meyer
- Peeyush Nandwana
- Philip Bingham
- Stephen Jesse
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Bogdan Dryzhakov
- Brian Fricke
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Chengyun Hua
- Christopher Fancher
- Christopher Ledford
- Christopher Rouleau
- Chris Tyler
- Debangshu Mukherjee
- Diana E Hun
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gerd Duscher
- Gina Accawi
- Gordon Robertson
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- J.R. R Matheson
- James Haley
- James Parks II
- Jamieson Brechtl
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- Jiaqiang Yan
- John Potter
- Jong K Keum
- Kai Li
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Liam White
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Obaid Rahman
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Philip Boudreaux
- Radu Custelcean
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Soydan Ozcan
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow
- Zhiming Gao

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.