Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- Rama K Vasudevan
- Brian Post
- David Nuttall
- Sergei V Kalinin
- Uday Vaidya
- Umesh N MARATHE
- Ying Yang
- Yongtao Liu
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nadim Hmeidat
- Olga S Ovchinnikova
- Trevor Aguirre
- Tyler Smith
- Alex Roschli
- Alice Perrin
- Brittany Rodriguez
- Christopher Ledford
- Craig Blue
- Georges Chahine
- Jim Tobin
- John Lindahl
- Kashif Nawaz
- Matt Korey
- Michael Kirka
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Stephen Jesse
- Steven J Zinkle
- Subhabrata Saha
- Xianhui Zhao
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alex Plotkowski
- Amber Hubbard
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Ben Lamm
- Bogdan Dryzhakov
- Brian Fricke
- Bruce A Pint
- Cait Clarkson
- Charlie Cook
- Chengyun Hua
- Christopher Hershey
- Christopher Rouleau
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Debangshu Mukherjee
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gabriel Veith
- Gerd Duscher
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James A Haynes
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- Jiaqiang Yan
- Jong K Keum
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Merlin Theodore
- Mina Yoon
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Radu Custelcean
- Ryan Dehoff
- Ryan Ogle
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Shajjad Chowdhury
- Steven Randolph
- Sudarsanam Babu
- Sumit Bahl
- Sumner Harris
- Sunyong Kwon
- Thomas Feldhausen
- Tim Graening Seibert
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Utkarsh Pratiush
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Zhiming Gao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).