Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Halil Tekinalp
- Meghan Lamm
- Rama K Vasudevan
- Vlastimil Kunc
- Ahmed Hassen
- Sergei V Kalinin
- Umesh N MARATHE
- Yongtao Liu
- Dan Coughlin
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Steven Guzorek
- Uday Vaidya
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Alex Roschli
- Amir K Ziabari
- Beth L Armstrong
- David Nuttall
- Diana E Hun
- Georges Chahine
- Kashif Nawaz
- Matt Korey
- Nadim Hmeidat
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Ryan Dehoff
- Sanjita Wasti
- Stephen Jesse
- Stephen M Killough
- Steve Bullock
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Ben Lamm
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Brittany Rodriguez
- Bryan Maldonado Puente
- Cait Clarkson
- Chengyun Hua
- Christopher Rouleau
- Corey Cooke
- Costas Tsouris
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gabriel Veith
- Gerd Duscher
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- Jiaqiang Yan
- Jim Tobin
- John Holliman II
- Jong K Keum
- Josh Crabtree
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Peter Wang
- Petro Maksymovych
- Radu Custelcean
- Ryan Kerekes
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sally Ghanem
- Sana Elyas
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steven Randolph
- Subhabrata Saha
- Sumner Harris
- Tolga Aytug
- Utkarsh Pratiush
- Zhiming Gao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.