Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- Rama K Vasudevan
- Brian Post
- David Nuttall
- Sergei V Kalinin
- Uday Vaidya
- Umesh N MARATHE
- Yongtao Liu
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nadim Hmeidat
- Olga S Ovchinnikova
- Trevor Aguirre
- Tyler Smith
- Alex Roschli
- Brittany Rodriguez
- Craig Blue
- Georges Chahine
- Jim Tobin
- John Lindahl
- Kashif Nawaz
- Matt Korey
- Mike Zach
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Stephen Jesse
- Subhabrata Saha
- Xianhui Zhao
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- An-Ping Li
- Andrew F May
- Andrew Lupini
- Annetta Burger
- Anton Ievlev
- Arpan Biswas
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Bogdan Dryzhakov
- Brad Johnson
- Brian Fricke
- Bruce Moyer
- Cait Clarkson
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Chengyun Hua
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Debangshu Mukherjee
- Debjani Pal
- Debraj De
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gabriel Veith
- Gautam Malviya Thakur
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Gaboardi
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- Jesse McGaha
- Jewook Park
- Jiaqiang Yan
- Jong K Keum
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Justin Griswold
- Kai Li
- Kevin Sparks
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kuntal De
- Kyle Gluesenkamp
- Laetitia H Delmau
- Liam Collins
- Liz McBride
- Luke Sadergaski
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Merlin Theodore
- Michael Kirka
- Mina Yoon
- Nedim Cinbiz
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Padhraic L Mulligan
- Paritosh Mhatre
- Petro Maksymovych
- Radu Custelcean
- Ryan Ogle
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Sandra Davern
- Shajjad Chowdhury
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Thomas Feldhausen
- Todd Thomas
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Utkarsh Pratiush
- Xiuling Nie
- Zhiming Gao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).