Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Sergei V Kalinin
- Ying Yang
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Alice Perrin
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Josh Michener
- Kashif Nawaz
- Kuntal De
- Stephen Jesse
- Steven J Zinkle
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Alex Roschli
- Alex Walters
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Austin Carroll
- Bogdan Dryzhakov
- Brian Fricke
- Brian Sanders
- Bruce A Pint
- Chris Masuo
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Daniel Jacobson
- David S Parker
- Debangshu Mukherjee
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Gerd Duscher
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Isaiah Dishner
- Ivan Vlassiouk
- James A Haynes
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jewook Park
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Kai Li
- Kitty K Mccracken
- Kyle Davis
- Kyle Gluesenkamp
- Liam Collins
- Liangyu Qian
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Michael Kirka
- Mina Yoon
- Nandhini Ashok
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Paul Abraham
- Paula Cable-Dunlap
- Radu Custelcean
- Ryan Dehoff
- Saban Hus
- Sai Mani Prudhvi Valleti
- Serena Chen
- Soydan Ozcan
- Steven Randolph
- Sumit Bahl
- Sumner Harris
- Sunyong Kwon
- Tim Graening Seibert
- Tyler Smith
- Utkarsh Pratiush
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Zhiming Gao

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.