Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Beth L Armstrong
- Kevin M Roccapriore
- Kyle Kelley
- Lawrence {Larry} M Anovitz
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Robert Sacci
- Tomonori Saito
- Brian Gibson
- Ethan Self
- Jaswinder Sharma
- Joshua Vaughan
- Kashif Nawaz
- Luke Meyer
- Sergiy Kalnaus
- Stephen Jesse
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Amit Shyam
- An-Ping Li
- Andrew G Stack
- Andrew Lupini
- Anisur Rahman
- Anna M Mills
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Benjamin L Doughty
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Calen Kimmell
- Chanho Kim
- Chelo Chavez
- Chengyun Hua
- Christopher Fancher
- Christopher Rouleau
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Felipe Polo Garzon
- Gabor Halasz
- Georgios Polyzos
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ilias Belharouak
- Ivan Vlassiouk
- J.R. R Matheson
- Jamieson Brechtl
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- Jiaqiang Yan
- John Potter
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Kai Li
- Khryslyn G Araño
- Kyle Gluesenkamp
- Liam Collins
- Logan Kearney
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matthew S Chambers
- Md Inzamam Ul Haque
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Neus Domingo Marimon
- Nickolay Lavrik
- Nihal Kanbargi
- Ondrej Dyck
- Peng Yang
- Petro Maksymovych
- Radu Custelcean
- Riley Wallace
- Ritin Mathews
- Saban Hus
- Sai Krishna Reddy Adapa
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Xiang Lyu
- Xiaohan Yang
- Zhiming Gao

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.