Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ali Passian
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Ethan Self
- Hongbin Sun
- Ilias Belharouak
- Jaswinder Sharma
- Prashant Jain
- Robert Sacci
- Sergiy Kalnaus
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Claire Marvinney
- Georgios Polyzos
- Harper Jordan
- Ian Greenquist
- Joel Asiamah
- Joel Dawson
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nate See
- Nihal Kanbargi
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Srikanth Yoginath
- Varisara Tansakul
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiang Lyu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.