Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Ying Yang
- Alex Plotkowski
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Ryan Dehoff
- Tomonori Saito
- Alice Perrin
- Ethan Self
- James A Haynes
- Jaswinder Sharma
- Robert Sacci
- Sergiy Kalnaus
- Steven J Zinkle
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andres Marquez Rossy
- Anisur Rahman
- Anna M Mills
- Brian Post
- Bruce A Pint
- Chanho Kim
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- Dean T Pierce
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Ilias Belharouak
- Jay Reynolds
- Jeff Brookins
- Jong K Keum
- Jovid Rakhmonov
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Kirka
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiang Lyu
- Yan-Ru Lin
- Yukinori Yamamoto

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.