Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Ethan Self
- Jaswinder Sharma
- Robert Sacci
- Sergiy Kalnaus
- Alexey Serov
- Alex Roschli
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Ben Lamm
- Bruce A Pint
- Chanho Kim
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Ilias Belharouak
- Jeremy Malmstead
- Jun Yang
- Khryslyn G Araño
- Kitty K Mccracken
- Logan Kearney
- Matthew S Chambers
- Meghan Lamm
- Mengdawn Cheng
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Shajjad Chowdhury
- Soydan Ozcan
- Steven J Zinkle
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiang Lyu
- Xianhui Zhao
- Yanli Wang
- Ying Yang
- Yutai Kato

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).