Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Beth L Armstrong
- Peter Wang
- Alex Walters
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Ying Yang
- Adam Willoughby
- Brian Gibson
- Bruce A Pint
- Edgar Lara-Curzio
- Ethan Self
- Jaswinder Sharma
- Joshua Vaughan
- Luke Meyer
- Rishi Pillai
- Robert Sacci
- Sergiy Kalnaus
- Steven J Zinkle
- Udaya C Kalluri
- William Carter
- Yanli Wang
- Yutai Kato
- Akash Jag Prasad
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Amit Shyam
- Anisur Rahman
- Anna M Mills
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Calen Kimmell
- Chanho Kim
- Charles Hawkins
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Gordon Robertson
- Ilias Belharouak
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiheon Jun
- John Potter
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Marie Romedenne
- Matthew S Chambers
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Nancy Dudney
- Nidia Gallego
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Riley Wallace
- Ritin Mathews
- Ryan Dehoff
- Shajjad Chowdhury
- Tim Graening Seibert
- Tolga Aytug
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiang Lyu
- Xiaohan Yang
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.