Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Michelle Lehmann
- Guang Yang
- Jaswinder Sharma
- Alexey Serov
- Edgar Lara-Curzio
- Robert Sacci
- Tomonori Saito
- Xiang Lyu
- Ying Yang
- Adam Willoughby
- Amit K Naskar
- Bruce A Pint
- Eric Wolfe
- Ethan Self
- Georgios Polyzos
- Khryslyn G Araño
- Logan Kearney
- Meghan Lamm
- Michael Toomey
- Nihal Kanbargi
- Rishi Pillai
- Sergiy Kalnaus
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alexandra Moy
- Alice Perrin
- Amanda Musgrove
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Chanho Kim
- Charles Hawkins
- Christopher Ledford
- Frederic Vautard
- Holly Humphrey
- Ilias Belharouak
- James Szybist
- Jiheon Jun
- Jonathan Willocks
- Junbin Choi
- Jun Yang
- Marie Romedenne
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nancy Dudney
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Ritu Sahore
- Ryan Dehoff
- Shajjad Chowdhury
- Tim Graening Seibert
- Todd Toops
- Tolga Aytug
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.