Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Adam M Guss
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Andrzej Nycz
- Ethan Self
- Jaswinder Sharma
- Josh Michener
- Kuntal De
- Robert Sacci
- Sergiy Kalnaus
- Udaya C Kalluri
- Xiaohan Yang
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Austin Carroll
- Biruk A Feyissa
- Bogdan Dryzhakov
- Carrie Eckert
- Chanho Kim
- Chris Masuo
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Georgios Polyzos
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Ilias Belharouak
- Isaiah Dishner
- Ivan Vlassiouk
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Jun Yang
- Khryslyn G Araño
- Kyle Davis
- Kyle Kelley
- Liangyu Qian
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nihal Kanbargi
- Paul Abraham
- Radu Custelcean
- Serena Chen
- Steven Randolph
- Vera Bocharova
- Vilmos Kertesz
- Vincent Paquit
- Xiang Lyu
- Yang Liu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.