Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Beth L Armstrong
- Gabriel Veith
- Jaswinder Sharma
- Michelle Lehmann
- Alexey Serov
- Guang Yang
- Tomonori Saito
- Xiang Lyu
- Ali Abouimrane
- Amit K Naskar
- Ethan Self
- Georgios Polyzos
- Gurneesh Jatana
- Jonathan Willocks
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Michael Toomey
- Nihal Kanbargi
- Robert Sacci
- Ruhul Amin
- Sergiy Kalnaus
- Todd Toops
- Yeonshil Park
- Alexander I Wiechert
- Amanda Musgrove
- Anisur Rahman
- Anna M Mills
- Benjamin Manard
- Ben LaRiviere
- Chanho Kim
- Charles F Weber
- Costas Tsouris
- David L Wood III
- Dhruba Deka
- Diana E Hun
- Gina Accawi
- Haiying Chen
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Joanna Mcfarlane
- Junbin Choi
- Jun Yang
- Lu Yu
- Mark M Root
- Matthew S Chambers
- Matt Vick
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Nance Ericson
- Nancy Dudney
- Paul Groth
- Philip Boudreaux
- Pradeep Ramuhalli
- Ritu Sahore
- Singanallur Venkatakrishnan
- Sreshtha Sinha Majumdar
- Vandana Rallabandi
- Vera Bocharova
- William P Partridge Jr
- Yaocai Bai
- Zhijia Du

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.