Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Soydan Ozcan
- Beth L Armstrong
- Meghan Lamm
- Gabriel Veith
- Halil Tekinalp
- Umesh N MARATHE
- Vlastimil Kunc
- Ahmed Hassen
- Guang Yang
- Katie Copenhaver
- Michelle Lehmann
- Omer Onar
- Steven Guzorek
- Tomonori Saito
- Uday Vaidya
- Adam Siekmann
- Alex Roschli
- Dan Coughlin
- Erdem Asa
- Ethan Self
- Georges Chahine
- Jaswinder Sharma
- Khryslyn G Araño
- Matt Korey
- Pum Kim
- Robert Sacci
- Sergiy Kalnaus
- Shajjad Chowdhury
- Subho Mukherjee
- Vipin Kumar
- Adwoa Owusu
- Akash Phadatare
- Alexey Serov
- Amanda Musgrove
- Amber Hubbard
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Ben Lamm
- Brian Post
- Cait Clarkson
- Chanho Kim
- David Nuttall
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Hyeonsup Lim
- Ilias Belharouak
- Isabelle Snyder
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Jun Yang
- Kim Sitzlar
- Kitty K Mccracken
- Logan Kearney
- Marm Dixit
- Matthew S Chambers
- Michael Toomey
- Nadim Hmeidat
- Nancy Dudney
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Steve Bullock
- Tolga Aytug
- Tyler Smith
- Vera Bocharova
- Xiang Lyu
- Xianhui Zhao

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.