Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Alexey Serov
- Edgar Lara-Curzio
- Jaswinder Sharma
- Kashif Nawaz
- Stephen Jesse
- Steven J Zinkle
- Xiang Lyu
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Amit K Naskar
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brandon Johnston
- Brian Fricke
- Bruce A Pint
- Charles Hawkins
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Eric Wolfe
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Szybist
- Jamieson Brechtl
- Jewook Park
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Kai Li
- Khryslyn G Araño
- Kyle Gluesenkamp
- Liam Collins
- Logan Kearney
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nidia Gallego
- Nihal Kanbargi
- Ondrej Dyck
- Radu Custelcean
- Rishi Pillai
- Ritu Sahore
- Saban Hus
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Tim Graening Seibert
- Todd Toops
- Utkarsh Pratiush
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.