Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Edgar Lara-Curzio
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Alexey Serov
- Beth L Armstrong
- Eric Wolfe
- Jaswinder Sharma
- Steven Guzorek
- Steven J Zinkle
- Xiang Lyu
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Amit K Naskar
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brittany Rodriguez
- Bruce A Pint
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- John Lindahl
- Jonathan Willocks
- Jordan Wright
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marie Romedenne
- Marm Dixit
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Nidia Gallego
- Nihal Kanbargi
- Rishi Pillai
- Ritu Sahore
- Sana Elyas
- Subhabrata Saha
- Tim Graening Seibert
- Todd Toops
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vipin Kumar
- Weicheng Zhong
- Wei Tang
- Xiang Chen

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The technologies provide additively manufactured thermal protection system.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).