Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Edgar Lara-Curzio
- Yong Chae Lim
- Zhili Feng
- Eric Wolfe
- Jian Chen
- Rangasayee Kannan
- Steven J Zinkle
- Wei Zhang
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Dali Wang
- Frederic Vautard
- Jiheon Jun
- Marie Romedenne
- Meghan Lamm
- Nidia Gallego
- Peeyush Nandwana
- Priyanshi Agrawal
- Rishi Pillai
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Shajjad Chowdhury
- Sudarsanam Babu
- Tim Graening Seibert
- Tolga Aytug
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.