Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Rafal Wojda
- Prasad Kandula
- Ying Yang
- Christopher Fancher
- Edgar Lara-Curzio
- James A Haynes
- Ryan Dehoff
- Steven J Zinkle
- Sumit Bahl
- Vandana Rallabandi
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Alice Perrin
- Andres Marquez Rossy
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Charles Hawkins
- Dean T Pierce
- Eric Wolfe
- Frederic Vautard
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Marcio Magri Kimpara
- Marie Romedenne
- Mostak Mohammad
- Nicholas Richter
- Nidia Gallego
- Omer Onar
- Peeyush Nandwana
- Peter Wang
- Praveen Kumar
- Rangasayee Kannan
- Rishi Pillai
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Subho Mukherjee
- Sudarsanam Babu
- Suman Debnath
- Sunyong Kwon
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yukinori Yamamoto

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.