Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Peeyush Nandwana
- Amit Shyam
- Blane Fillingim
- Brian Post
- Edgar Lara-Curzio
- Lauren Heinrich
- Mike Zach
- Rangasayee Kannan
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Willoughby
- Alex Plotkowski
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Bruce A Pint
- Bruce Moyer
- Bryan Lim
- Charles Hawkins
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Eric Wolfe
- Frederic Vautard
- Gordon Robertson
- Hsin Wang
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Marie Romedenne
- Nedim Cinbiz
- Nidia Gallego
- Padhraic L Mulligan
- Peter Wang
- Rishi Pillai
- Ryan Dehoff
- Sandra Davern
- Tim Graening Seibert
- Tomas Grejtak
- Tony Beard
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yiyu Wang

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a system and method of needling of veiled AS4 fabric tape.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.