Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Srikanth Yoginath
- Alexey Serov
- Ali Abouimrane
- Edgar Lara-Curzio
- James J Nutaro
- Jaswinder Sharma
- Marm Dixit
- Nance Ericson
- Pratishtha Shukla
- Ruhul Amin
- Steven J Zinkle
- Sudip Seal
- Xiang Lyu
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Ali Passian
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- David L Wood III
- Eric Wolfe
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Harper Jordan
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Marie Romedenne
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nidia Gallego
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Rishi Pillai
- Ritu Sahore
- Tim Graening Seibert
- Todd Toops
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yaocai Bai
- Zhijia Du

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.