Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ying Yang
- Ali Abouimrane
- Alice Perrin
- Edgar Lara-Curzio
- Ruhul Amin
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Willoughby
- Alex Plotkowski
- Amit Shyam
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Christopher Ledford
- Costas Tsouris
- David L Wood III
- David S Parker
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- James A Haynes
- Jaswinder Sharma
- Jong K Keum
- Junbin Choi
- Lu Yu
- Marie Romedenne
- Marm Dixit
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Radu Custelcean
- Rishi Pillai
- Ryan Dehoff
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yaocai Bai
- Zhijia Du

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.