Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Edgar Lara-Curzio
- Kyle Kelley
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Steven J Zinkle
- Vincent Paquit
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Anton Ievlev
- Arpan Biswas
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Bryan Maldonado Puente
- Charles Hawkins
- Corey Cooke
- Eric Wolfe
- Frederic Vautard
- Gerd Duscher
- Gina Accawi
- Gurneesh Jatana
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Mark M Root
- Marti Checa Nualart
- Michael Kirka
- Neus Domingo Marimon
- Nidia Gallego
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Peter Wang
- Rishi Pillai
- Ryan Kerekes
- Sai Mani Prudhvi Valleti
- Sally Ghanem
- Stephen Jesse
- Sumner Harris
- Tim Graening Seibert
- Utkarsh Pratiush
- Weicheng Zhong
- Wei Tang
- Xiang Chen

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.