Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Yong Chae Lim
- Edgar Lara-Curzio
- Rangasayee Kannan
- Sergei V Kalinin
- Stephen Jesse
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Eric Wolfe
- Frederic Vautard
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Jiheon Jun
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marie Romedenne
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Ondrej Dyck
- Peeyush Nandwana
- Priyanshi Agrawal
- Rishi Pillai
- Roger G Miller
- Ryan Dehoff
- Saban Hus
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yiyu Wang
- Yongtao Liu
- Yukinori Yamamoto
- Zhili Feng

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.