Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Peeyush Nandwana
- Kyle Kelley
- Rama K Vasudevan
- Amit Shyam
- Blane Fillingim
- Brian Post
- Edgar Lara-Curzio
- Lauren Heinrich
- Rangasayee Kannan
- Sergei V Kalinin
- Stephen Jesse
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Willoughby
- Alex Plotkowski
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Eric Wolfe
- Frederic Vautard
- Gordon Robertson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marie Romedenne
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Ondrej Dyck
- Peter Wang
- Rishi Pillai
- Ryan Dehoff
- Saban Hus
- Steven Randolph
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yiyu Wang
- Yongtao Liu

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.