Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Ying Yang
- Kyle Kelley
- Rama K Vasudevan
- Alice Perrin
- Edgar Lara-Curzio
- Sergei V Kalinin
- Stephen Jesse
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Willoughby
- Alex Plotkowski
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Christopher Ledford
- Costas Tsouris
- David S Parker
- Eric Wolfe
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- James A Haynes
- Jamieson Brechtl
- Jewook Park
- Jong K Keum
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marie Romedenne
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Mina Yoon
- Neus Domingo Marimon
- Nicholas Richter
- Nidia Gallego
- Olga S Ovchinnikova
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Rishi Pillai
- Ryan Dehoff
- Saban Hus
- Steven Randolph
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yongtao Liu

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.