Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Edgar Lara-Curzio
- Jaswinder Sharma
- Srikanth Yoginath
- Ying Yang
- Anees Alnajjar
- Frederic Vautard
- James A Haynes
- James J Nutaro
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pratishtha Shukla
- Sergiy Kalnaus
- Steven J Zinkle
- Sudip Seal
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Adam Willoughby
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Christopher Bowland
- Craig A Bridges
- Eric Wolfe
- Felix L Paulauskas
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- Holly Humphrey
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Marie Romedenne
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Peeyush Nandwana
- Rishi Pillai
- Robert E Norris Jr
- Ryan Dehoff
- Santanu Roy
- Sheng Dai
- Sumit Gupta
- Sunyong Kwon
- Tim Graening Seibert
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).