Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Adam Willoughby
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Mike Zach
- Rishi Pillai
- William Carter
- Alex Walters
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brandon Johnston
- Bruce A Pint
- Bruce Hannan
- Bruce Moyer
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- John Lindahl
- Joshua Vaughan
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Loren L Funk
- Luke Sadergaski
- Marie Romedenne
- Nedim Cinbiz
- Padhraic L Mulligan
- Peter Wang
- Polad Shikhaliev
- Priyanshi Agrawal
- Sandra Davern
- Theodore Visscher
- Tony Beard
- Vladislav N Sedov
- Yacouba Diawara
- Yong Chae Lim
- Zhili Feng

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.