Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Kyle Kelley
- Michelle Lehmann
- Rama K Vasudevan
- Tomonori Saito
- Adam Willoughby
- Ethan Self
- Jaswinder Sharma
- Rishi Pillai
- Robert Sacci
- Sergei V Kalinin
- Sergiy Kalnaus
- Stephen Jesse
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- An-Ping Li
- Andrew Lupini
- Anisur Rahman
- Anna M Mills
- Anton Ievlev
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Chanho Kim
- Charles Hawkins
- Georgios Polyzos
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilias Belharouak
- Jamieson Brechtl
- Jewook Park
- Jiheon Jun
- Jun Yang
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Marie Romedenne
- Marti Checa Nualart
- Matthew S Chambers
- Maxim A Ziatdinov
- Michael Toomey
- Nancy Dudney
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Ondrej Dyck
- Priyanshi Agrawal
- Saban Hus
- Steven Randolph
- Vera Bocharova
- Xiang Lyu
- Yong Chae Lim
- Yongtao Liu
- Zhili Feng

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.