Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Vlastimil Kunc
- Ahmed Hassen
- Alexandre Sorokine
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Clinton Stipek
- Dan Coughlin
- Daniel Adams
- Jessica Moehl
- Jiheon Jun
- Jim Tobin
- Josh Crabtree
- Kim Sitzlar
- Marie Romedenne
- Merlin Theodore
- Philipe Ambrozio Dias
- Priyanshi Agrawal
- Steven Guzorek
- Subhabrata Saha
- Taylor Hauser
- Vipin Kumar
- Viswadeep Lebakula
- Yong Chae Lim
- Zhili Feng

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance