Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ali Passian
- Adam Willoughby
- Rishi Pillai
- Annetta Burger
- Brandon Johnston
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Claire Marvinney
- Debraj De
- Gautam Malviya Thakur
- Harper Jordan
- James Gaboardi
- Jesse McGaha
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Kevin Sparks
- Liz McBride
- Marie Romedenne
- Nance Ericson
- Priyanshi Agrawal
- Srikanth Yoginath
- Todd Thomas
- Varisara Tansakul
- Xiuling Nie
- Yong Chae Lim
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance