Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Hongbin Sun
- Adam Willoughby
- Prashant Jain
- Rishi Pillai
- Annetta Burger
- Brandon Johnston
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Debraj De
- Gautam Malviya Thakur
- Ian Greenquist
- Ilias Belharouak
- James Gaboardi
- Jesse McGaha
- Jiheon Jun
- Kevin Sparks
- Liz McBride
- Marie Romedenne
- Nate See
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Ruhul Amin
- Thien D. Nguyen
- Todd Thomas
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiuling Nie
- Yong Chae Lim
- Zhili Feng

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.