Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam Willoughby
- Hongbin Sun
- Prashant Jain
- Rishi Pillai
- Yaosuo Xue
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Fei Wang
- Ian Greenquist
- Ilias Belharouak
- Jiheon Jun
- Marie Romedenne
- Nate See
- Nithin Panicker
- Phani Ratna Vanamali Marthi
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Rafal Wojda
- Ruhul Amin
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Vishaldeep Sharma
- Vittorio Badalassi
- Yong Chae Lim
- Yonghao Gui
- Zhili Feng

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.