Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Venugopal K Varma
- William Carter
- Adam Willoughby
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Mahabir Bhandari
- Rishi Pillai
- Adam Aaron
- Adam Stevens
- Alex Walters
- Amy Elliott
- Brandon Johnston
- Bruce A Pint
- Cameron Adkins
- Charles D Ottinger
- Charles Hawkins
- Erin Webb
- Evin Carter
- Govindarajan Muralidharan
- Isha Bhandari
- Jeremy Malmstead
- Jiheon Jun
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Marie Romedenne
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Ryan Dehoff
- Sarah Graham
- Sergey Smolentsev
- Soydan Ozcan
- Sudarsanam Babu
- Thomas R Muth
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.