Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Adam Willoughby
- Bruce A Pint
- James A Haynes
- Rishi Pillai
- Ryan Dehoff
- Sumit Bahl
- Ying Yang
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Ben Lamm
- Beth L Armstrong
- Brandon Johnston
- Brian Post
- Charles Hawkins
- Christopher Fancher
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Jovid Rakhmonov
- Marie Romedenne
- Meghan Lamm
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Steven J Zinkle
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yanli Wang
- Yong Chae Lim
- Yukinori Yamamoto
- Yutai Kato
- Zhili Feng

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.