Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vincent Paquit
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Adam Willoughby
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Rishi Pillai
- Stephen M Killough
- Akash Jag Prasad
- Brandon Johnston
- Bruce A Pint
- Bryan Maldonado Puente
- Calen Kimmell
- Canhai Lai
- Charles Hawkins
- Chris Tyler
- Clay Leach
- Corey Cooke
- Costas Tsouris
- Gina Accawi
- Gurneesh Jatana
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jiheon Jun
- Marie Romedenne
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Priyanshi Agrawal
- Ryan Kerekes
- Sally Ghanem
- Vladimir Orlyanchik
- Yong Chae Lim
- Zackary Snow
- Zhili Feng

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).