Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Adam Willoughby
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Rishi Pillai
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Yaosuo Xue
- Brandon Johnston
- Bruce A Pint
- Bryan Maldonado Puente
- Charles Hawkins
- Corey Cooke
- Fei Wang
- Gina Accawi
- Gurneesh Jatana
- Jiheon Jun
- Marie Romedenne
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Phani Ratna Vanamali Marthi
- Priyanshi Agrawal
- Rafal Wojda
- Ryan Kerekes
- Sally Ghanem
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Yong Chae Lim
- Yonghao Gui
- Zhili Feng

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.