Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Adam Willoughby
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Marm Dixit
- Rishi Pillai
- Ruhul Amin
- Vlastimil Kunc
- Xiang Lyu
- Ahmed Hassen
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Dan Coughlin
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jiheon Jun
- Jim Tobin
- Jonathan Willocks
- Josh Crabtree
- Junbin Choi
- Khryslyn G Araño
- Kim Sitzlar
- Logan Kearney
- Lu Yu
- Marie Romedenne
- Meghan Lamm
- Merlin Theodore
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Ritu Sahore
- Steven Guzorek
- Subhabrata Saha
- Todd Toops
- Vipin Kumar
- Yaocai Bai
- Yong Chae Lim
- Zhijia Du
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.