Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Adam Willoughby
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Rishi Pillai
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Alex Roschli
- Brandon Johnston
- Bruce A Pint
- Bryan Maldonado Puente
- Charles Hawkins
- Corey Cooke
- Erin Webb
- Evin Carter
- Gina Accawi
- Gurneesh Jatana
- Jeremy Malmstead
- Jiheon Jun
- Kitty K Mccracken
- Marie Romedenne
- Mark M Root
- Mengdawn Cheng
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peter Wang
- Priyanshi Agrawal
- Ryan Kerekes
- Sally Ghanem
- Soydan Ozcan
- Tyler Smith
- Xianhui Zhao
- Yong Chae Lim
- Zhili Feng

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).