Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam Willoughby
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Rishi Pillai
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brandon Johnston
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debraj De
- Gautam Malviya Thakur
- Hsin Wang
- James Gaboardi
- James Klett
- Jesse McGaha
- Jiheon Jun
- John Lindahl
- Kevin Sparks
- Liz McBride
- Marie Romedenne
- Mike Zach
- Nedim Cinbiz
- Priyanshi Agrawal
- Ramanan Sankaran
- Todd Thomas
- Tony Beard
- Vimal Ramanuj
- Wenjun Ge
- Xiuling Nie
- Yong Chae Lim
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance