Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Alex Roschli
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Christopher Rouleau
- Costas Tsouris
- Erin Webb
- Evin Carter
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jeremy Malmstead
- Jiheon Jun
- Jong K Keum
- Kitty K Mccracken
- Kyle Kelley
- Marie Romedenne
- Mengdawn Cheng
- Mina Yoon
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Radu Custelcean
- Soydan Ozcan
- Steven Randolph
- Tyler Smith
- Xianhui Zhao
- Yong Chae Lim
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance