Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Kyle Kelley
- Rama K Vasudevan
- Adam Willoughby
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Josh Michener
- Kuntal De
- Rishi Pillai
- Sergei V Kalinin
- Stephen Jesse
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Austin Carroll
- Bogdan Dryzhakov
- Brandon Johnston
- Brian Sanders
- Bruce A Pint
- Charles Hawkins
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jewook Park
- Jiheon Jun
- Joanna Tannous
- John F Cahill
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kitty K Mccracken
- Kyle Davis
- Liam Collins
- Liangyu Qian
- Marie Romedenne
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mengdawn Cheng
- Nandhini Ashok
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paul Abraham
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Saban Hus
- Serena Chen
- Soydan Ozcan
- Steven Randolph
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz
- Yong Chae Lim
- Yongtao Liu
- Zhili Feng

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called