Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Gurneesh Jatana
- Adam Willoughby
- Alexey Serov
- James Szybist
- Jaswinder Sharma
- Jonathan Willocks
- Rishi Pillai
- Todd Toops
- Xiang Lyu
- Yeonshil Park
- Alexander I Wiechert
- Amit K Naskar
- Benjamin Manard
- Beth L Armstrong
- Brandon Johnston
- Bruce A Pint
- Charles F Weber
- Charles Hawkins
- Costas Tsouris
- Derek Splitter
- Dhruba Deka
- Diana E Hun
- Gabriel Veith
- Georgios Polyzos
- Gina Accawi
- Haiying Chen
- Holly Humphrey
- Jiheon Jun
- Joanna Mcfarlane
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marie Romedenne
- Mark M Root
- Marm Dixit
- Matt Vick
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Philip Boudreaux
- Priyanshi Agrawal
- Ritu Sahore
- Sreshtha Sinha Majumdar
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- William P Partridge Jr
- Yong Chae Lim
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Method to operate a compression ignition engine in dual fuel operation with premixed turbulent flame propagation from low to high loads.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Lean-burn natural gas (NG) engines are a preferred choice for the hard-to-electrify sectors for higher efficiency and lower NOx emissions, but methane slip can be a challenge.