Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Vlastimil Kunc
- Ahmed Hassen
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Dan Coughlin
- Diana E Hun
- Easwaran Krishnan
- James Manley
- Jamieson Brechtl
- Jiheon Jun
- Jim Tobin
- Joe Rendall
- Josh Crabtree
- Karen Cortes Guzman
- Kashif Nawaz
- Kim Sitzlar
- Kuma Sumathipala
- Marie Romedenne
- Mengjia Tang
- Merlin Theodore
- Muneeshwaran Murugan
- Priyanshi Agrawal
- Steven Guzorek
- Subhabrata Saha
- Tomonori Saito
- Vipin Kumar
- Yong Chae Lim
- Zhili Feng
- Zoriana Demchuk

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance