Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Adam Willoughby
- Alexey Serov
- Jaswinder Sharma
- Rishi Pillai
- Xiang Lyu
- Amit K Naskar
- Beth L Armstrong
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Diana E Hun
- Easwaran Krishnan
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Manley
- James Szybist
- Jamieson Brechtl
- Jiheon Jun
- Joe Rendall
- Jonathan Willocks
- Junbin Choi
- Karen Cortes Guzman
- Kashif Nawaz
- Khryslyn G Araño
- Kuma Sumathipala
- Logan Kearney
- Marie Romedenne
- Marm Dixit
- Meghan Lamm
- Mengjia Tang
- Michael Toomey
- Michelle Lehmann
- Muneeshwaran Murugan
- Nihal Kanbargi
- Priyanshi Agrawal
- Ritu Sahore
- Todd Toops
- Tomonori Saito
- Yong Chae Lim
- Zhili Feng
- Zoriana Demchuk

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.