Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon Johnston
- Bruce A Pint
- Charles F Weber
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Derek Dwyer
- Hsin Wang
- James Klett
- Jiheon Jun
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Louise G Evans
- Marie Romedenne
- Matt Vick
- Mengdawn Cheng
- Mike Zach
- Nedim Cinbiz
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Richard L. Reed
- Tony Beard
- Vandana Rallabandi
- Yong Chae Lim
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance