Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Beth L Armstrong
- Peeyush Nandwana
- Amit Shyam
- Gabriel Veith
- Justin West
- Peter Wang
- Andrzej Nycz
- Guang Yang
- Michelle Lehmann
- Rangasayee Kannan
- Ritin Mathews
- Ryan Dehoff
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Blane Fillingim
- Chris Masuo
- Edgar Lara-Curzio
- Jian Chen
- Jun Qu
- Michael Kirka
- Robert Sacci
- Sudarsanam Babu
- Thomas Feldhausen
- Tomonori Saito
- Yong Chae Lim
- Adam Stevens
- Adam Willoughby
- Ahmed Hassen
- Alice Perrin
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David Olvera Trejo
- David S Parker
- Eric Wolfe
- Ethan Self
- J.R. R Matheson
- James A Haynes
- Jaswinder Sharma
- Jaydeep Karandikar
- Joshua Vaughan
- Khryslyn G Araño
- Lauren Heinrich
- Meghan Lamm
- Rishi Pillai
- Rob Moore II
- Scott Smith
- Sergiy Kalnaus
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Tomas Grejtak
- Wei Zhang
- William Carter
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Akash Jag Prasad
- Alexandra Moy
- Alexey Serov
- Alex Roschli
- Amanda Musgrove
- Amir K Ziabari
- Amit K Naskar
- Amy Elliott
- Andres Marquez Rossy
- Andrew F May
- Anisur Rahman
- Anna M Mills
- Ben Garrison
- Benjamin Lawrie
- Benjamin L Doughty
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Gibson
- Brian Sales
- Bryan Lim
- Calen Kimmell
- Cameron Adkins
- Chanho Kim
- Charles Hawkins
- Chengyun Hua
- Christopher Fancher
- Costas Tsouris
- Craig Blue
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Emma Betters
- Frederic Vautard
- Fred List III
- Gabor Halasz
- Georgios Polyzos
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Ilias Belharouak
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiaqiang Yan
- Jiheon Jun
- John Lindahl
- John Potter
- Jong K Keum
- Jordan Wright
- Josh B Harbin
- Jovid Rakhmonov
- Jun Yang
- Keith Carver
- Liam White
- Logan Kearney
- Luke Meyer
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Michael Borish
- Michael Toomey
- Mike Zach
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Philip Bingham
- Priyanshi Agrawal
- Radu Custelcean
- Richard Howard
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Shajjad Chowdhury
- Steven Guzorek
- Sunyong Kwon
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Tony L Schmitz
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiang Lyu
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.